ETHAMBUTOL HYDROCHLORIDE TABLETS, USP

DESCRIPTION
Ethambutol hydrochloride is an oral antimycobacterial agent which is specifically effective against actively growing microorganisms of the genus Mycobacterium, including M. tuberculosis. Ethambutol hydrochloride is a white, crystalline powder. The structural formula is:

C10H24N2O2

Each Ethambutol Hydrochloride Tablet, USP for oral administration, contains 100 mg or 400 mg ethambutol hydrochloride.

In each, additional Ethambutol Hydrochloride Tablet, USP contains the following inactive ingredients: croscarmellose sodium, dicalcium phosphate, lactose monohydrate, magnesium stearate, pregelatinized starch, and talc.

CLINICAL PHARMACOLOGY
Ethambutol hydrochloride following a single oral dose of 25 mg/kg of body weight, attains a peak of 2 to 5 mcg/mL, in serum 2 to 4 hours after administration. When the drug is administered daily for longer periods of time at this dose, serum levels are similar. The serum level of ethambutol hydrochloride fails to undetectable levels in 24 hours after the last dose except in some patients with abnormally renal function. The interindividual concentrations of ethambutol peak values approximately twice those of plasma and maintain this ratio throughout the 24 hours.

During the 24-hour period following oral administration of ethambutol hydrochloride approximately 50 percent of the initial dose is excreted unchanged in the urine, while an additional 5 to 15 percent appears in the form of metabolites. The main path of metabolism appears to be an initial oxidation of the alcohol to an aldehyde intermediate, followed by conversion to a dicarboxylic acid. From 20 to 22 percent of the initial dose is excreted in the feces as unchanged drug. No drug accumulation has been observed with consecutive single daily doses of 25 mg/kg in patients with normal kidney function, although marked accumulation has been demonstrated in patients with renal insufficiency.

Ethambutol hydrochloride diffuses into actively growing Mycobacterium cells such as tubercle bacilli. Ethambutol hydrochloride appears to inhibit the synthesis of one or more metabolites, thus causing impairment of cell metabolism, arrest of multiplication, and cell death. No cross resistance with other available antimycobacterial agents has been demonstrated.

Ethambutol hydrochloride has been shown to be effective against strains of Mycobacterium tuberculosis but does not seem to be as active against mycobacterial species other than tubercle bacilli. Mycobacterium tuberculosis strains previously unresponsive to ethambutol hydrochloride have been uniformly sensitive to concentrations of 0.005 or less mcg/mL, depending on the nature of the culture media. When ethambutol hydrochloride has been used alone for treatment of tuberculosis, tubercle bacilli from these patients have developed resistance to ethambutol hydrochloride by in vitro susceptibility tests: the development of resistance has been unpredictable and appears to occur in a step-by-step manner. No cross resistance between ethambutol hydrochloride and other antituberculous drugs has been demonstrated. Ethambutol hydrochloride has reduced the incidence of the emergence of mycobacterial resistance to isoniazid when both drugs have been used concurrently. An age-diffuse microscobic assay, based upon inhibition of Mycobacterium avium (ATCC 607) may be used to determine concentrations of ethambutol hydrochloride in serum and urine.

ANIMAL PHARMACOLOGY
Toxicological studies in dogs on high prolonged doses produced evidence of myocutaneous damage and failure, and degeneration of the septal lacunae of the eye, the significance of which is not known. Degenerative changes in the central nervous system, apparently dose-related, have also been observed in dogs receiving ethambutol hydrochloride for a prolonged period. In the mouse monkey, neurological signs appeared after treatment with high doses given daily over a period of several months. These were correlated with specific serum levels of ethambutol and with failure, and depigmentation of the tapetum lucidum of the eyes, the significance of which is not known. Degenerative changes in the central nervous system, apparently not dose-related, have also been observed in monkeys which received ethambutol hydrochloride in high doses for a prolonged period.

INDICATIONS
Ethambutol Hydrochloride Tablets, USP are indicated for the treatment of pulmonary tuberculosis. It should not be used as the sole antimycobacterial drug, but should be used in conjunction with at least one other antimycobacterial drug. Selection of the companion drug should be based on clinical experience, considerations of comparative safety, and appropriate in vitro susceptibility studies. In patients who have not received previous antimycobacterial therapy, i.e., initial treatment, the most frequently used regimens have been the following:

- Ethambutol hydrochloride, USP plus isoniazid
- Ethambutol hydrochloride, USP plus isoniazid plus streptomycin

In patients who have received previous antimycobacterial therapy, mycobacterial resistance to other drugs used in initial therapy is frequent. Consequently, in such retreatment patients, ethambutol hydrochloride should be combined with at least one of the second line drugs not previously administered to the patient and to which bacterial susceptibility has been indicated by appropriate in vitro studies. Antimycobacterial drugs used with ethambutol hydrochloride have included clarithromycin, cycloserine, dapsone, ethionamide, isoniazid, lincomycin, pyrazinamide, rifampin, rifampicin, and streptomycin. Ethambutol hydrochloride may produce decreases in visual acuity which appear to be due to optic neuritis. This effect may be related to dose and duration of treatment. This effect is generally reversible when administration of the drug is discontinued promptly. However, irreversible blindness has been reported. (See PRECAUTIONS and ADVERSE REACTIONS.) There is no observed correlation between dosage and serum drug levels and optic neuritis. The evaluation of changes in visual acuity is more difficult, and care should be taken to be sure the variation in visual acuity is not due to the underlying disease conditions. In such patients, consideration should be given to relationship between benefits expected and possible visual deterioration since evaluation of visual change is difficult. (For recommended procedures, see below paragraphs under ADVERSE REACTIONS.)

CONTRAINDICATIONS
Ethambutol hydrochloride is contraindicated in patients who are known to be hypersensitive to this drug. It is also contraindicated in patients with known optic neuritis unless clinical judgment determines that it may be used. Ethambutol hydrochloride is contraindicated in patients who are unable to be assessed for visual side effects or changes in vision (e.g., young children, unconscious patients).

WARNINGS
Ethambutol hydrochloride may produce decreases in visual acuity which appear to be due to optic neuritis. This effect may be related to dose and duration of treatment. This effect is generally reversible when administration of the drug is discontinued promptly. However, irreversible blindness has been reported. (See PRECAUTIONS and ADVERSE REACTIONS.)

- Liver toxicities including fatalities have been reported (See ADVERSE REACTIONS). Baseline and periodic assessment of hepatic function should be performed.

PRECAUTIONS
Ethambutol hydrochloride is not recommended for use in pediatric patients under 13 years of age since safety and efficacy data for use have not been established.

- Patients with decreased renal function need the dosage reduced as determined by serum levels of ethambutol hydrochloride, since the main path of excretion of this drug is by the kidneys.
- Because this drug may have adverse effects on vision, physical examination should include ophthalmoscopy, finger perception and testing of color discrimination. In patients with visual defects such as cataracts, recurrent inflammatory conditions of the eye, optic neuritis, and diabetic retinopathy, the evaluation of changes in visual acuity is more difficult, and care should be taken to be sure the variation in vision is not due to the underlying disease conditions. In such patients, consideration should be given to relationship between benefits expected and possible visual deterioration since evaluation of visual change is difficult. (For recommended procedures, see below paragraphs under ADVERSE REACTIONS.)

- As with any potent drug, baseline and periodic assessment of organ system functions, including renal, hepatic, and hematopoietic, should be performed.

Drug Interactions
The results of a study of coadministration of ethambutol hydrochloride (50 mg/kg) with an aluminum hydroxide containing antacid to 15 patients with tuberculosis showed a reduction of mean serum concentrations and urinary excretion of ethambutol of approximately 25% and 13% respectively, as compared with the drug alone. This effect is probably due to chelation of ethambutol by these antacids. It is recommended to avoid concurrent administration of ethambutol with aluminum hydroxide containing antacids for at least 4 hours following ethambutol administration.

Pregnancy
Teratogenic Effects: Pregnancy Category C

- There are no adequate and well-controlled studies in pregnant women. There are reports of ophthalmic abnormalities occurring in infants born to women on antimycobacterial therapy that included ethambutol hydrochloride. Ethambutol hydrochloride should be used during pregnancy, only if the benefit justifies the potential risk to the fetus.

- Ethambutol hydrochloride has been shown to be teratogenic in pregnant mice and rabbits when given in high doses. When pregnant mice or rabbits were treated with high doses of ethambutol hydrochloride, fetal mortality was slight but not significantly (P>0.05) increased. Female rats treated with ethambutol hydrochloride displayed slight but insignificant (P>0.05) decreases in fertility and litter size. In fetuses born of mice treated with high doses of ethambutol hydrochloride during pregnancy, babies born with cataracts or with microphthalmia occurred with a frequency of 1 in 300. In rabbits treated with ethambutol, cataracts were observed. Minor abnormalities of the conjunctival vessels were seen in the newborn of rats treated with high doses of ethambutol hydrochloride during pregnancy. Pajkert observed high doses of ethambutol hydrochloride during pregnancy gave birth to two fetuses with microphthalmia and cataracts in one with a shortened right forearm accompanied by bilateral wrist-joint contracture and one with hare lip and cleft palate.

Nursing Mothers
Ethambutol hydrochloride is excreted into breast milk. The use of ethambutol hydrochloride should be considered only if the expected benefit to the mother outweighs the potential risk to the infant.

Pediatric Use
- Ethambutol hydrochloride is not recommended for use in pediatric patients under 13 years of age since safety and efficacy data for use have not been established.

Geriatric Use
- There are limited data on the use of ethambutol hydrochloride in the elderly. One study of 101 patients, 65 years and older, on multiple drug antimycobacterial regimens included 94 patients on ethambutol hydrochloride. No differences in safety or tolerability were observed in these patients compared with that reported in adults in general. Other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

ADVERSE REACTIONS
Ethambutol hydrochloride may produce decreases in visual acuity, including irreversible blindness, which appear to be due to optic neuritis. Optic neuritis including optic neuritis or iridocyclitis occurring in association with ethambutol therapy may be characterized by one or more of the following events: decreased visual acuity, scotoma, color blindness, and/or visual defect. These events have also been reported in the absence of a diagnosis of optic or iridocyclitis.

Patients should be advised to report promptly to their physician any change in visual acuity.

The change in visual acuity may be unilateral or bilateral and hence each eye must be tested separately and in all cases by the same testing of visual acuity should be performed before beginning ethambutol hydrochloride therapy and periodically during drug administration, except that it should be done monthly when a patient is on a dosage of more than 15 mg/kg/day. Snellen eye charts are recommended for testing of visual acuity. Studies have shown that there are definite
fluctuations of one or two lines of the Snellen chart in the visual acuity of many tuberculous patients not receiving ethambutol hydrochloride.

The following table may be useful in interpreting possible changes in visual acuity attributable to ethambutol hydrochloride:

Significant Decrease

<table>
<thead>
<tr>
<th>Snellen Reading</th>
<th>Reading Indicating Significant Decrease</th>
<th>Significant Number of Lines</th>
<th>Decrease Number of Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/20</td>
<td>16/20 - 20/25</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>20/25</td>
<td>16/20 - 20/30</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>20/30</td>
<td>16/20 - 20/40</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>20/40</td>
<td>16/20 - 20/50</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>20/50</td>
<td>16/20 - 20/60</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Significant Number of Lines and Decrease Number of Points: 1 = 10

In general, changes in visual acuity less than those indicated under "Significant Number of Lines" and "Decrease Number of Points" may be due to chance variation, limitations of the testing method, or physiologic variability. Conversely, changes in visual acuity exceeding or exceeding those under "Significant Number of Lines" and "Decrease Number of Points" indicate the need for retuning and careful evaluation of the patient's visual status. If careful evaluation confirms the magnitude of visual change and fails to reveal another cause, ethambutol hydrochloride should be discontinued and the patient reevaluated at frequent intervals. Progressive decreases in visual acuity during therapy may be considered to be due to ethambutol hydrochloride.

If corrective glasses are used prior to treatment, these must be worn during visual acuity testing. During 3 to 5 years of therapy, a refractive error may develop which must be corrected in order to obtain accurate test results. Testing the visual acuity through a pinhole eliminates refractive error.

Patients developing visual abnormality during ethambutol hydrochloride treatment may show subjective visual symptoms before, or simultaneously with, the demonstration of decreases in visual acuity, and all patients receiving ethambutol hydrochloride should be questioned periodically about blurred vision and other subjective eye symptoms.

Recovery of visual acuity generally occurs over a period of weeks to months after the drug has been discontinued. Some patients have received ethambutol hydrochloride again after such recovery without recurrence of loss of visual acuity. Other adverse reactions reported include: hypereosinophilia, exanthematous papular reaction, dermatitis, rhinitis, hyperhidrosis, pruritus, and joint pain; anorexia, nausea, vomiting, gastrointestinal upset, and abdominal pain; fever, malaise, headache, and dizziness; mental confusion, disorientation, and possible hallucinations; thrombocytopenia, leukopenia, and neutropenia. Numbness and tingling of the extremities due to peripheral neuritis have been reported. Changes in serum uric acid levels occur and precipitation of acute gout has been reported. Pulmonary infiltrates, with or without eosinophilia, have also been reported during ethambutol hydrochloride therapy. Liver toxicities, including fatalities, have been reported (See WARNINGS.). Ethambutol hydrochloride is recommended for therapy in conjunction with one or more other antituberculous drugs, these changes may be related to the concurrent therapy.

Hypersensitivity syndrome consisting of cutaneous reaction (such as rash or exfoliative dermatitis), eosinophilia, and one or more of the following: hepatitis, pneumonitis, fever, lymphadenopathy, malaise, headache, and dizziness; mental confusion, disorientation, and possible hallucinations; benign gout have been reported (See WARNINGS.). Ethambutol hydrochloride is recommended for therapy in conjunction with one or more other antituberculous drugs, these changes may be related to the concurrent therapy.

The following table may be useful in interpreting possible changes in visual acuity attributable to ethambutol hydrochloride.

DOSAGE AND ADMINISTRATION

Ethambutol hydrochloride should not be used alone; in initial treatment or in retreatment. Ethambutol hydrochloride should be administered on a once every 24-hour basis only. Absorption is not significantly altered by administration with food. Therapy, in general, should be continued until bacteriological conversion has become permanent and maximal clinical improvement has occurred.

Ethambutol hydrochloride is not recommended for use in pediatric patients under 13 years of age since safe conditions for use have not been established.

Initial Treatment

In patients who have not received previous antituberculous therapy, administer ethambutol hydrochloride 15 mg/kg of body weight, as a single oral dose once every 24 hours. In the more recent studies, isoniazid and isoniazid has been administered concurrently in a single, daily, oral dose.

Retreatment

In patients who have received previous antituberculous therapy, administer ethambutol hydrochloride 25 mg/kg (11 mg/lb) of body weight, as a single oral dose once every 24 hours. Concurrently administer at least one other antituberculous drug to which the organisms have been demonstrated to be susceptible by appropriate in vitro tests. Suitable drugs usually consist of those not previously used in the treatment of the patient. After 60 days of ethambutol hydrochloride administration, decrease the dose to 15 mg/kg (7 mg/lb) of body weight, and administer as a single oral dose once every 24 hours.

During the period when a patient is on a daily dose of 25 mg/kg, monthly eye examinations are advised.

See Table for easy selection of proper weight-dose tablet(s).

HOW SUPPLIED

Ethambutol Hydrochloride Tablets USP, 100 mg: round, white, film-coated tablets, debossed "VP" on one side and "1" on the other side.

- Bottles of 100 tablets

Ethambutol Hydrochloride Tablets USP, 400 mg: round, white, film-coated tablets, debossed "VP" on one side and "1" on the other side.

- Bottles of 60 tablets
- Bottles of 90 tablets
- Bottles of 100 tablets
- Bottles of 1000 tablets
- Unit Dose Boxes of 100 tablets

Store at 20° - 25°C (68° - 77°F) [See USP Controlled Room Temperature]. Protect from light and moisture. Dispense in a tight, light-resistant container as defined in the USP using a child-resistant closure.

To report SUSPECTED ADVERSE REACTIONS, contact FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

Manufactured for:

ViralPharm Incorporated
Marietta, GA 30062-2260

Manufactured by:

Epic Pharma, Incorporated
Laurelton, NY 11413

Revised September 2014

MF101REV09/14

01604

WARNINGS

7.3125"